Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A near-minimal instance of optical cooling is experimentally presented, wherein the internal-state entropy of a single atom is reduced more than twofold by illuminating it with broadband, incoherent light. Since the rate of optical pumping by a thermal state increases monotonically with its temperature, the cooling power in this scenario increases with higher thermal occupation, an example of a phenomenon known as cooling by heating. In contrast to optical pumping using coherent, narrow-band laser light, here, we perform the same task with fiber-coupled, broadband sunlight, the brightest laboratory-accessible source of continuous blackbody radiation.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Free, publicly-accessible full text available October 3, 2026
- 
            Free, publicly-accessible full text available February 27, 2026
- 
            The energetic disorder induced by fluctuating liquid environments acts in opposition to the precise control required for coherence-based sensing. Overcoming fluctuations requires a protected quantum subspace that only weakly interacts with the local environment. We report a ytterbium complex that exhibited an ultranarrow absorption linewidth in solution at room temperature with a full width at half maximum of 0.625 milli–electron volts. Using spectral hole burning, we measured an even narrower linewidth of 410 pico–electron volts at 77 kelvin. Narrow linewidths allowed low-field magnetic circular dichroism at room temperature, used to sense Earth-scale magnetic fields. These results demonstrated that ligand protection in lanthanide complexes could substantially diminish electronic state fluctuations. We have termed this system an “atomlike molecular sensor” (ALMS) and proposed approaches to improve its performance.more » « less
- 
            Erasures, or errors with known locations, are a more favorable type of error for quantum error-correcting codes than Pauli errors. Converting physical noise into erasures can significantly improve the performance of quantum error correction. Here, we apply the idea of performing erasure conversion by encoding qubits into metastable atomic states, proposed by Wu, Kolkowitz, Puri, and Thompson [Nat. Comm. 13, 4657 (2022)], to trapped ions. We suggest an erasure-conversion scheme for metastable trapped-ion qubits and develop a detailed model of various types of errors. We then compare the logical performance of ground and metastable qubits on the surface code under various physical constraints and conclude that metastable qubits may outperform ground qubits when the achievable laser power is higher for metastable qubits.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
